[Đề 2023] Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau


Ta có \(f’\left( x \right).{{e}^{f\left( x \right)}}=\left( 2x+1 \right){{e}^{x}}\) \(\Leftrightarrow f’\left( x \right){{e}^{f\left( x \right)}}=\left[ \left( 2x-1 \right)+2 \right]{{e}^{x}}={{\left[ \left( 2x-1 \right){{e}^{x}} \right]}^{\prime }}\), \(\forall x\in \left( \frac{1}{2};+\infty  \right)\)

Nguyên hàm hai vế của phương trình ta được:\({{e}^{f\left( x \right)}}=\left( 2x-1 \right){{e}^{x}}+C\).

Mặt khác, \(f\left( 1 \right)=1\) nên ta có \({{e}^{1}}=\left( 2.1-1 \right){{e}^{1}}+C\Rightarrow C=0\).

Vậy \({{e}^{f\left( x \right)}}=\left( 2x-1 \right){{e}^{x}}\Rightarrow f\left( x \right)=\ln \left( 2x-1 \right)+x\).

Khi đó \({{3}^{x}}\ge \left( f\left( x \right)-m \right)\ln 3\Leftrightarrow \frac{{{3}^{x}}}{\ln 3}\ge \ln \left( 2x-1 \right)+x-m,\forall x>\frac{1}{2}\)

\(\Leftrightarrow m\ge \ln \left( 2x-1 \right)+x-\frac{{{3}^{x}}}{\ln 3},\forall x\in \left( \frac{1}{2};+\infty  \right)\).

Đặt \(g\left( x \right)=\ln \left( 2x-1 \right)+x-\frac{{{3}^{x}}}{\ln 3}\) với \(x\in \left( \frac{1}{2};+\infty  \right)\).

Ta có: \(g’\left( x \right)=\frac{2}{2x-1}+1-{{3}^{x}}=\frac{2x+1}{2x-1}-{{3}^{x}}\). Cho \(g’\left( x \right)=0\Leftrightarrow \frac{2x+1}{2x-1}={{3}^{x}}\)

Nhận xét trên \(\left( \frac{1}{2};+\infty  \right)\), \(h\left( x \right)={{3}^{x}}\) là hàm đồng biến và \(k\left( x \right)=\frac{2x+1}{2x-1}\) là hàm nghịch biến

Đồng thời \(h\left( 1 \right)=k\left( 1 \right)\) nên \(x=1\) là nghiệm của phương trình \(\left( * \right)\).

Ta có bảng biến thiên của \(g\left( x \right)\) như sau:

Dựa vào bảng biến thiên và yêu cầu bài toán ta có \(m\ge g\left( 1 \right)=1-\frac{3}{\ln 3}\approx -1,73\)

Do \(m\in {{\mathbb{Z}}^{-}}\Rightarrow m=-1\). Vậy chỉ có duy nhất 1 giá trị của \(m\) thỏa yêu cầu bài toán.



Link Hoc va de thi 2021

Chuyển đến thanh công cụ