Cho các số phức (z,w) khác (0), thỏa mãn (z + w ne 0) và (frac{1}{z} + frac{3}{w} = frac{6}{{z + w}}). Khi đó (left| {frac{z}{w}} right|) bằng – Sách Toán


Câu hỏi:
Cho các số phức (z,w) khác (0), thỏa mãn (z + w ne 0) và (frac{1}{z} + frac{3}{w} = frac{6}{{z + w}}). Khi đó (left| {frac{z}{w}} right|) bằng

A. (sqrt 3 ).

B. (frac{1}{{sqrt 3 }}).

C. (3).

D. (frac{1}{3}).

LỜI GIẢI CHI TIẾT

Ta có (frac{1}{z} + frac{3}{w} = frac{6}{{z + w}} Leftrightarrow frac{{w + 3z}}{{zw}} = frac{6}{{z + w}} Leftrightarrow (w + 3z)(z + w) = 6zw Leftrightarrow 3{z^2} – 2zw + {w^2} = 0)

( Leftrightarrow 3{left( {frac{z}{w}} right)^2} – 2frac{z}{w} + 1 = 0 Leftrightarrow frac{z}{w} = frac{1}{3} pm frac{{sqrt 2 }}{3}i Rightarrow left| {frac{z}{w}} right| = frac{1}{{sqrt 3 }})

=======



Link Hoc va de thi 2021

Chuyển đến thanh công cụ