DẠNG TOÁN 39 TÌM MIN MAX CỦA HÀM HỢP TRÊN ĐOẠN – phát triển theo đề tham khảo Toán 2021
Theo đề tham khảo Toán 2021 của Bộ GD&ĐT
ĐỀ BÀI:
Cho hàm số (fleft( x right)) có đạo hàm là (f’left( x right)). Đồ thị của hàm số (y = f’left( x right)) được cho như hình vẽ dưới đây:
Biết (fleft( { – 1} right) + fleft( 0 right) < fleft( 1 right) + fleft( 2 right)). Giá trị nhỏ nhất và giá trị lớn nhất của hàm số (y = fleft( x right)) trên đoạn (left[ { – 1;,2} right]) lần lượt là
A. (fleft( 0 right);,,fleft( 2 right)).
B. (fleft( 2 right);,,fleft( 0 right)).
C. (fleft( 1 right);,,fleft( { – 1} right)).
D. (fleft( 1 right);,,fleft( 2 right)).
LỜI GIẢI CHI TIẾT
Từ đồ thị hàm số (y = f’left( x right)) ta có bảng biến thiên của hàm số (fleft( x right)) như sau:
Dựa vào bảng biến thiên
(mathop {Min}limits_{left[ { – 1;2} right]} fleft( {{kern 1pt} x{kern 1pt} } right) = fleft( {{kern 1pt} 1{kern 1pt} } right)).
Ta có: (fleft( { – 1} right) + fleft( 0 right) < fleft( 1 right) + fleft( 2 right) Rightarrow left{ begin{array}{l}fleft( 2 right) – fleft( 0 right) > fleft( { – 1} right) + fleft( 1 right) > 0\fleft( 2 right) – fleft( { – 1} right) > fleft( 0 right) – fleft( 1 right) > 0end{array} right.).
Do đó: (mathop {Max}limits_{left[ { – 1;2} right]} fleft( {{kern 1pt} x{kern 1pt} } right) = fleft( {{kern 1pt} 2{kern 1pt} } right)).
TÌM MIN MAX CỦA HÀM HỢP TRÊN ĐOẠN
CÁC DẠNG BÀI TẬP TƯƠNG TỰ
Lý thuyết về giá trị lớn nhất, giá trị nhỏ nhất.
Tìm giá trị lớn nhất – giá trị nhỏ nhất của hàm số liên tục trên một đoạn.
Tìm giá trị lớn nhất – giá trị nhỏ nhất của hàm số trên một khoảng.
Sử dụng GTLN, GTNN để giải phương trình, bất phương trình, hệ phương trình.
Sử dụng giá trị lớn nhất, giá trị nhỏ nhất để chứng minh bất đẳng thức.
Ứng dụng giá trị lớn nhất, giá trị nhỏ nhất của hàm số vào bài toán thực tế.
Một số ứng dụng sự biến thiên của hàm số.