Xét số phức (z = dfrac{{{z_1}}}{{{z_2}}} = a + bi,,,left( {a,b in mathbb{R}} right)). Khi đó (left| b right|) bằng:


Cách 1:

Gọi A, B lần lượt là các điểm biểu diễn của số phức ({z_1}) và ({z_2})

Theo đề bài, ta có: (OA = 3,,OB = 4,,AB = sqrt {41} )

( Rightarrow cos widehat {AOB} = dfrac{{{3^2} + {4^2} – 41}}{{2.3.4}} =  – dfrac{2}{3})

Đặt ({z_1} = 3left( {cos varphi  + i,sin varphi } right) Rightarrow {z_2} = 4left( {cos left( {varphi  pm widehat {AOB}} right) + i,sin left( {varphi  pm widehat {AOB}} right)} right) = 4left( {cos left( {varphi  pm alpha } right) + i,sin left( {varphi  pm alpha } right)} right),,,left( {alpha  = widehat {AOB}} right))

( Rightarrow dfrac{{{z_1}}}{{{z_2}}} = dfrac{{3left( {cos varphi  + i,sin varphi } right)}}{{4left( {cos left( {varphi  pm alpha } right) + i,sin left( {varphi  pm alpha } right)} right)}} = dfrac{3}{4}.left( {cos varphi  + i,sin varphi } right)left( {cos left( {varphi  pm alpha } right) – i,sin left( {varphi  pm alpha } right)} right))

( = dfrac{3}{4}.left[ {left( {cos varphi .cos left( {varphi  pm alpha } right) + sin varphi .sin left( {varphi  pm alpha } right)} right) + ileft( {,sin varphi .cos left( {varphi  pm alpha } right) – cos varphi .sin left( {varphi  pm alpha } right)} right)} right])

( = dfrac{3}{4}.left[ {cos left( { pm alpha } right) + i.sin left( { pm alpha } right)} right] = dfrac{3}{4}.left( {cos alpha  pm isin alpha } right))

( Rightarrow b =  pm dfrac{3}{4}sin alpha  Rightarrow left| b right| = dfrac{3}{4}.sqrt {1 – {{left( { – dfrac{2}{3}} right)}^2}}  = dfrac{{sqrt 5 }}{4}).

Cách 2:

Ta có: (left| {{z_1}} right| = 3,,left| {{z_2}} right| = 4,,left| {{z_1} – {z_2}} right| = sqrt {41}  Rightarrow left{ begin{array}{l}dfrac{{left| {{z_1}} right|}}{{left| {{z_2}} right|}} = dfrac{3}{4}\dfrac{{left| {{z_1} – {z_2}} right|}}{{left| {{z_2}} right|}} = dfrac{{sqrt {41} }}{4}end{array} right. Leftrightarrow left{ begin{array}{l}left| {dfrac{{{z_1}}}{{{z_2}}}} right| = dfrac{3}{4}\left| {dfrac{{{z_1}}}{{{z_2}}} – 1} right| = dfrac{{sqrt {41} }}{4}end{array} right.)

(z = dfrac{{{z_1}}}{{{z_2}}} = a + bi,,,left( {a,b in mathbb{R}} right),, Rightarrow )(left{ begin{array}{l}{a^2} + {b^2} = {left( {dfrac{3}{4}} right)^2}\{left( {a – 1} right)^2} + {b^2} = {left( {dfrac{{sqrt {41} }}{4}} right)^2}end{array} right. Leftrightarrow left{ begin{array}{l}{a^2} + {b^2} = dfrac{9}{{16}}\{left( {a – 1} right)^2} + {b^2} = dfrac{{41}}{{16}}end{array} right. Leftrightarrow left{ begin{array}{l}{b^2} = dfrac{9}{{16}} – {a^2}\{left( {a – 1} right)^2} + dfrac{9}{{16}} – {a^2} = dfrac{{41}}{{16}}end{array} right.)

( Leftrightarrow left{ begin{array}{l}{b^2} = dfrac{5}{{16}}\a =  – dfrac{1}{2}end{array} right. Leftrightarrow left{ begin{array}{l}left| b right| = dfrac{{sqrt 5 }}{4}\a =  – dfrac{1}{2}end{array} right.)

Vậy (left| b right| = dfrac{{sqrt 5 }}{4}).

Chọn: D



Link Hoc va de thi 2021

Chuyển đến thanh công cụ