Câu hỏi:
Cho tam giác ABC nội tiếp đường tròn (O;R), AH là đường cao (H thuộc BC). Chọn câu đúng.
Lời giải tham khảo:
Đáp án đúng: C
Vẽ đường kính AD của đường tròn (O), suy ra (widehat {ACD} = {90^0}) (vì tam giác ACD có ba đỉnh thuộc đường tròn và AD là đường kính)
Xét ΔHBA và ΔCDA có:
( widehat {AHB} = widehat {ACD}left( { = {{90}^0}} right);widehat {HBA} = widehat {CDA})
(góc nội tiếp cùng chắn ),
Do đó
({rm{Delta }}HBAsim{rm{Delta }}CDA Rightarrow frac{{AH}}{{AC}} = frac{{AB}}{{AD}} Rightarrow AB.AC = AD.AH)
Mà AD=2R
Do đó (AB.AC=2R.AH.)
ADSENSE