Cho tam giác MBC vuông tại M có B^=60°. Gọi A là điểm nằm trên tia đối của tia MB sao cho MA = MB. Chứng minh rằng tam giác ABC là tam giác đều.


Câu hỏi:

Cho tam giác MBC vuông tại M có B^=60°. Gọi A là điểm nằm trên tia đối của tia MB sao cho MA = MB. Chứng minh rằng tam giác ABC là tam giác đều.

Trả lời:

Cho tam giác MBC vuông tại M có góc B = 60 độ. Gọi A là điểm nằm trên tia đối của tia MB sao cho MA = MB (ảnh 1)

Xét hai tam giác AMC vuông tại M và BMC vuông tại M có:
AM = BM (theo giả thiết).
MC chung.
Do đó ΔAMC=ΔBMC (2 cạnh góc vuông).
Khi đó AC = BC (2 cạnh tương ứng).
Tam giác ABC có AC = BC nên tam giác ABC cân tại C.
Tam giác ABC cân tại C lại có ABC^=60° nên tam giác ABC là tam giác đều.
Vậy tam giác ABC là tam giác đều.

====== **** mời các bạn xem câu tiếp bên dưới **** =====



Link Hoc va de thi 2021

Chuyển đến thanh công cụ