Tổng hợp lý thuyết bài tập đồ thị dao động điều hòa có đáp án chi tiết vật lý lớp 12


BÀI TẬP VỀ ĐỒ THỊ DAO ĐỘNG ĐIỀU HÒA CÓ LỜI GIẢI CHI TIẾT:

 

Lời giải chi tiết

Dựa vào đồ thị ta thấy khoảng thời gian 2 lần liên tiếp vật có li độ x = 0 là:

$frac{T}{2}=0,2Rightarrow T=0,4sRightarrow omega =frac{2pi }{T}=5sleft( rad/s right)$. Chọn C

 

Lời giải chi tiết

Từ đồ thị ta thấy rằng $left{ begin{array}{} {{x}_{0}}=frac{A}{2}=2text{ }(cm) \ {} {{v}_{0}}<0 \ end{array} right.Rightarrow {{varphi }_{0}}=frac{pi }{3}$

Lại có: ${{t}_{left( 2to 0to -4 right)}}={{t}_{left( frac{A}{2}to 0to -A right)}}=0,4sRightarrow frac{T}{12}+frac{T}{4}=0,4Rightarrow T=1,2sRightarrow omega =frac{2pi }{T}=frac{5pi }{3}$

Vậy phương trình dao động của vật là: $x=4cos left( frac{5pi t}{3}+frac{pi }{3} right)text{ (cm)}$. Chọn A

 

 

Lời giải chi tiết

Biên độ dao động của vật là A = 8 (cm)

Dựa vào đồ thị ta thấy ${{t}_{left( 0to Ato -A right)}}=0,3(s)Leftrightarrow frac{3T}{4}=0,3Rightarrow T=0,4left( s right)$

Do đó $omega =frac{2pi }{T}=5pi left( rad/s right)$

Tại thời điểm ban đầu $left{ begin{array}{} x=0 \ {} v>0 \ end{array} right.Rightarrow {{varphi }_{0}}=frac{-pi }{2}$

Do đó phương trình dao động của vật là: $x=8cos left( 5pi -frac{pi }{2} right)text{ }left( cm right)$. Chọn C

 

Bài tập 4: Một chất điểm dao động điều hòa dọc theo trục Ox, với O  trùng với vị trí cân bằng của chất điểm. Đường biểu diễn sự phụ thuộc li độ chất điểm theo thời gian t cho ở hình vẽ. Phương trình vận tốc của chất điểm là:

A.$v=60pi cos left( 10pi t-frac{pi }{3} right)text{ }left( cm/s right)$  

B. $v=60pi cos left( 10pi t-frac{pi }{6} right)text{ }left( cm/s right)$ 

C. $v=60cos left( 10pi t-frac{pi }{3} right)text{ }left( cm/s right)$ 

D.$v=60cos left( 10pi t-frac{pi }{6} right)text{ }left( cm/s right)$

Lời giải chi tiết

Biên độ dao động của vật là A = 6 (cm)

Dựa vào đồ thị ta thấy rằng sau 0,2s trạng thái dao động vật được lặp lại, do đó $T=0,2sRightarrow omega =frac{2pi }{T}=10pi left( rad/s right)$

Tại thời điểm bạn đầu $left{ begin{array}{} x=-3cm=frac{-A}{2} \ {} v>0 \ end{array} right.Rightarrow {{varphi }_{0}}=frac{-2pi }{3}$

Do đó phương trình dao động của vật là $x=6cos left( 10pi t-frac{2pi }{3} right)cm$

$Rightarrow v=60pi cos left( 10pi t-frac{2pi }{3}+frac{pi }{2} right)=60pi cos left( 10pi t-frac{pi }{6} right)left( cm/s right)$. Chọn B

 

 

 

 

Bài tập 5: Một chất điểm dao động điều hòa dọc theo trục Ox. Đường biểu diễn sự phụ thuộc vận tốc chất điểm theo thời gian t cho ở hình vẽ. Phương trình dao động của chất điểm là:

A. $x=3cos left( 4pi t-frac{2pi }{3} right)cm$ 

B. $x=3cos left( 4pi t-frac{5pi }{6} right)cm$ 

C.$x=4cos left( 3pi t-frac{pi }{3} right)cm$  

D. $x=4cos left( 3pi t-frac{5pi }{6} right)cm$

Lời giải chi tiết

Ta có: ${{v}_{max }}=omega A=12pi ;{{v}_{0}}=6pi sqrt{3}$

Lại có: $begin{array}{} Rightarrow T=0,5,sRightarrow omega =frac{2pi }{T}=4pi ,(rad/s). \ {} x=-4 \ {} t=5s \ end{array}$

$Rightarrow T=0,5,sRightarrow omega =frac{2pi }{T}=4pi ,(rad/s).$

Khi đó $A=frac{{{v}_{max }}}{omega }=3left( cm right)$

Tại thời điểm ban đầu $a>0Rightarrow x=-{{omega }^{2}}a0 \ end{array} right.Rightarrow {{varphi }_{0}}=frac{-2pi }{3}$

Do đó phương trình dao động của vật là $x=3cos left( 4pi t-frac{2pi }{3} right)cm$. Chọn A

Cách 2: Tại thời điểm ban đầu $left{ begin{array}{} v=6pi sqrt{3} \ {} vuparrow  \ end{array} right.Rightarrow {{varphi }_{0v}}=-frac{pi }{6}Rightarrow {{varphi }_{0x}}=-frac{pi }{6}-frac{pi }{2}=-frac{2pi }{3}$

Do đó phương trình dao động của vật là $x=3cos left( 4pi t-frac{2pi }{3} right)cm$. Chọn A

Bài tập 6: Một chất điểm dao động điều hòa dọc theo trục Ox. Đường biểu diễn sự phụ thuộc vận tốc chất điểm theo thời gian t cho ở hình vẽ. Phương trình dao động của chất điểm là:

A. $x=2,5cosleft( 8pi t+frac{5pi }{6} right)cm$

B. $x=2,5cosleft( 8pi t-frac{5pi }{6} right)cm$ 

C. $x=2,5cosleft( 8pi t+frac{pi }{6} right)cm$ 

D.$x=2,5cosleft( 8pi t-frac{pi }{6} right)cm$

Lời giải chi tiết

Ta có: ${{v}_{max }}=omega A=20pi ;{{v}_{0}}=10pi $

Lại có: ${{t}_{left( frac{{{v}_{max }}}{2}to 0to {{v}_{max }} right)}}={{t}_{left( frac{Asqrt{3}}{2}to Ato 0 right)}}=frac{T}{12}+frac{T}{4}=frac{1}{12}Rightarrow T=0,25sRightarrow omega =frac{2pi }{T}=8pi left( rad/s right)$

Khi đó $A=frac{{{v}_{max }}}{omega }=2,5left( cm right)$

Tại thời điểm ban đầu $a0Rightarrow left{ begin{array}{} x=frac{Asqrt{3}}{2} \ {} v>0 \ end{array} right.Rightarrow {{varphi }_{0}}=frac{-pi }{6}$

Do đó phương trình dao động của vật là $x=2,5cos left( 8pi t-frac{pi }{6} right)cm$. Chọn D

Cách 2: Tại thời điểm ban đầu $left{ begin{array}{} v=10pi  \ {} vdownarrow  \ end{array} right.Rightarrow {{varphi }_{0v}}=frac{pi }{3}Rightarrow {{varphi }_{0x}}=frac{pi }{3}-frac{pi }{2}=-frac{pi }{6}$

Do đó phương trình dao động của vật là $x=2,5cos left( 8pi t-frac{pi }{6} right)cm$. Chọn D

 

Bài tập 7:[Trích đề thi THPTQG năm 2017]. Hình bên là đồ thị biểu diễn sự phụ thuộc của vận tốc v theo thời gian t của một vật dao động điều hòa. Phương trình dao động của vật là: 

A.$x=frac{3}{8pi }cos left( frac{40pi }{3}t+frac{pi }{6} right)left( cm right)$  

B. $x=frac{3}{4pi }cos left( frac{20pi }{3}t+frac{pi }{6} right)left( cm right)$ 

C.$x=frac{3}{8pi }cos left( frac{20pi }{3}t-frac{pi }{6} right)left( cm right)$  

D.$x=frac{3}{4pi }cos left( frac{20pi }{3}t-frac{pi }{6} right)left( cm right)$ 

Lời giải chi tiết

Dựa vào đồ thị ta thấy mỗi ô tính theo trục Ot ứng với thời gian là: $frac{0,1}{4}=0,025s$

Khoảng thời gian 2 lần liên tiếp vận tốc của vật bằng 0 là $frac{T}{2}=0,025.6Rightarrow T=0,3s$

Suy ra $omega =frac{2pi }{T}=frac{20pi }{3}$. Tại thời điểm $t=0Rightarrow left{ begin{array}{} v=frac{{{v}_{max }}}{2} \ {} vdownarrow  \ end{array} right.Rightarrow {{varphi }_{0v}}=frac{pi }{3}$              

Do đó phương trình vận tốc là $v=5cos left( frac{20pi t}{3}+frac{pi }{3} right)left( cm/s right)$

$Rightarrow x=frac{3}{4pi }cos left( frac{20pi t}{3}+frac{pi }{3}-frac{pi }{2} right)Rightarrow x=frac{3}{4pi }cos left( frac{20pi t}{3}-frac{pi }{6} right)left( cm right)$. Chọn D

 

 

Bài tập 8: Hình bên là đồ thị bieru diễn sự phụ thuộc của gia tốc a theo thời gian t của một vật dao động điều hòa. Phương trình dao động của vật là:

A. $x=4cos left( 2pi t-frac{pi }{4} right)cm$ 

B. $x=4cos left( 2pi t+frac{pi }{4} right)cm$ 

C. $x=8cos left( pi t-frac{pi }{4} right)cm$ 

D.$x=4cos left( 2pi t-frac{3pi }{4} right)cm$

Lời giải chi tiết

Ta có: ${{a}_{max }}={{omega }^{2}}A=16{{pi }^{2}}left( cm/{{s}^{2}} right)$

Lại có: ${{t}_{left( frac{{{a}_{max }}sqrt{2}}{2}to 0to {{a}_{max }} right)}}={{t}_{left( frac{Asqrt{2}}{2}to 0to A right)}}=frac{T}{8}+frac{T}{4}=frac{3T}{8}=frac{3}{8}Rightarrow T=1s$

Khi đó $omega =frac{2pi }{T}=2pi $

Tại thời điểm ban đầu $left{ begin{array}{} a=frac{-{{a}_{max }}sqrt{2}}{2} \ {} auparrow  \ end{array} right.Rightarrow {{varphi }_{0a}}=frac{-3pi }{4}$

Do đó $a=16{{pi }^{2}}cos left( 2pi t-frac{3pi }{4} right)Rightarrow x=4cos left( 2pi t-frac{3pi }{4}+pi  right)=4cos left( 2pi t+frac{pi }{4} right)cm$. Chọn B

 

 

Lời giải chi tiết

Ta có:${{v}_{2max }}={{omega }_{2}}A=4pi Rightarrow {{omega }_{2}}=frac{2pi }{3}Rightarrow {{T}_{2}}=frac{2pi }{{{omega }_{2}}}=3left( s right)$

Dựa vào đồ thị ta thấy rằng ${{T}_{1}}=frac{{{T}_{2}}}{2}=1,5left( s right)$

Phương trình dao động của 2 vật: ${{x}_{1}}=6cos left( frac{2pi t}{{{T}_{1}}}-frac{pi }{2} right)left( cm right);{{x}_{2}}=6cos left( frac{2pi t}{{{T}_{2}}}-frac{pi }{2} right)left( cm right)$

Không kể thời điểm t = 0 thì sau 3s hai vật gặp nhau 4 lần

Thời điểm 2 vật gặp nhau lần đầu tiên thỏa mãn $frac{2pi }{{{T}_{1}}}t-frac{pi }{2}=frac{pi }{2}-frac{2pi }{{{T}_{2}}}tRightarrow left( frac{1}{{{T}_{1}}}+frac{1}{{{T}_{2}}} right)t=frac{1}{2}Rightarrow t=0,5$

Do đó sau 3 + 0,5 = 3,5 (s) thì 2 vật đã gặp nhau 5 lần. Chọn D

 

Bài tập 10: Đồ thị biểu diễn gia tốc a của một dao động điều hòa theo thời gian như sau:

Đồ thị li độ x tương ứng là:

A.  B. 

Lời giải chi tiết

Ta có: $x=-{{omega }^{2}}x$. Tại thời điểm ban đầu $a=0Rightarrow x=0$ (loại đáp án và D)

Tại thời điểm $t=frac{T}{4}$ ta có $a={{omega }^{2}}ARightarrow x=-A$ (loại đáp án A). Chọn B

 

Bài tập 11: Đồ thị biểu diễn gia tốc a của một dao động điều hòa theo thời gian như sau:

Đồ thị của vận tốc tương ứng là:

A.   B.  

C.   D. 

Lời giải chi tiết

Tại thời điểm ban đầu ta có: $a=-{{omega }^{2}}x=-{{omega }^{2}}ARightarrow x=ARightarrow v=0$ (loại A và D) ( lúc này vật đang ở vị trí biên dương)

Ngay sau đó vật đi về vị tríc cân bằng và vận tốc của vật khi đi từ biên dương về VTCB nhỏ hơn 0 (oại đáp án B). Chọn C

 

 

Lời giải chi tiết

 

 

 

 

 

 

 

 

 

 

 

Lời giải chi tiết

Thế năng đàn hồi $F=frac{kvartriangle {{ell }^{2}}}{2}$

Đồ thị là dạng hình sin nên thế năng đàn hồi biến thiên tuần hoàn với tần số bằng 2 lần tần số dao động điều hòa của vật

Nhìn vào đồ thị hình sin của thế năng đàn hồi ta thấy khoảng thời gian từ điểm cao nhất đến điểm thấp nhất của đồ thị chênh lệch về thời gian là $15-5=10left( ms right)=frac{T}{2}$

Chu kì dao động của thế năng là 20 ms nên tần số của thế năng là $frac{1}{T}=50Hz$

Vậy tần số dao động của vật là 25Hz

Chú ý: Trong trường hợp con lắc lò xo treo thẳng đứng có $A>Delta ell $ thì đồ thị của thế năng đàn hồi vào thời gian không có dạng hình sin

 

Lời giải chi tiết

Dựa vào đồ thị ta thấy mỗi ô vuông ứng với thời gian là 0,1s

Khoảng thời gian 2 lần liên tiếp vật có li độ $x=0$ là( ứng với 8 ô)

$frac{T}{2}=8.0,1=0,8Rightarrow T=1,6sRightarrow omega =frac{2pi }{T}=frac{5pi }{4}$

Tại thời điểm t = 0,3s ta có:$left{ begin{array}{} x=0,cm \ {} v<0 \ end{array} right.Rightarrow {{varphi }_{3}}=frac{pi }{2}$ 

Pha dao động tại thời điểm t = 0,2s là ${{varphi }_{2}}={{varphi }_{3}}-frac{5pi }{4}.0,1=frac{3pi }{8}$

Do đó $Acos frac{3pi }{8}=2Rightarrow A=5,226cm$

Mặt khác $Delta t={{t}_{0,2to 0,9}}=0,7sRightarrow Delta varphi =0,7.frac{5pi }{4}=frac{7pi }{8}$

Do đó ${{x}_{t=0,9}}=Acos left( frac{3pi }{8}+frac{7pi }{8} right)=-3,696Rightarrow a=-{{omega }^{2}}x=57cm/{{s}^{2}}$. Chọn B

Bài tập 15: [Chuyên Quốc học Huế 2017]. Hình vẽ là đồ thị biểu diễn độ dời của dao động x theo thời gian t của 1 vật dao động điều hòa. Phương trình dao động của vật là:

A. $x=4cos left( 10pi t+frac{2pi }{3} right)cm$ 

B. $x=4cos left( 20pi t+frac{2pi }{3} right)cm$ 

C. $x=4cos left( 10pi t+frac{5pi }{6} right)cm$ 

D.$x=4cos left( 20pi t-frac{pi }{3} right)cm$

Lời giải chi tiết

Ta có $A=4cm,frac{T}{2}=frac{2,2-1}{12}Rightarrow T=frac{1}{5}left( s right)Rightarrow omega =10pi $

Tại thời điểm t = 0 ta có $left{ begin{array}{} x=-2=-frac{A}{2} \ {} v<0 \ end{array} right.Rightarrow {{varphi }_{0}}=frac{2pi }{3}$. Chọn A

Bài tập 16: [Trích Đề thử Chuyên Đại học Vinh 216] Đồ thị dao động của một chất điểm dao động điều hòa như hình vẽ. Phương trình biểu diễn sự phụ thuộc của vận tốc của vật theo thời gian là

A. $v=frac{4pi }{3}cos left( frac{pi t}{3}+frac{pi }{6} right)cm/s$ 

B. $v=frac{4pi }{3}cos left( frac{pi t}{6}+frac{5pi }{6} right)cm/s$ 

C. $v=4pi cos left( frac{pi t}{3}+frac{pi }{3} right)cm/s$ 

D. $v=4pi cos left( frac{pi t}{6}+frac{pi }{3} right)cm/s$

Lời giải chi tiết

Dựa vào đồ thị ta thấy: tại thời điểm $t=0Rightarrow left{ begin{array}{} x=2 \ {} v>0 \ end{array} right.Rightarrow {{varphi }_{0}}=-frac{pi }{3}$

Lại có: ${{t}_{left( 2to 4 right)}}+T=7Rightarrow frac{T}{6}+T=7Rightarrow T=6sRightarrow omega =frac{pi }{3}left( rad/s right)$

Do đó $x=4cos left( frac{pi t}{3}-frac{pi }{3} right)cmRightarrow v=frac{4pi }{3}cos left( frac{pi t}{3}+frac{pi }{6} right)cm/s$. Chọn A

 

Bài tập 17:[Trích Sở GD-ĐT Tây Ninh 2017] Cho hai dao dộng cùng phương có phương trình ${{x}_{1}}={{A}_{1}}cos left( omega t+{{varphi }_{1}} right)$và ${{x}_{2}}={{A}_{2}}cos left( omega t+{{varphi }_{2}} right)$(x tính bằng cm, t được tính bằng s). Đồ thị dao động tổng hợp $x={{x}_{1}}+{{x}_{2}}$ có dạng như hình vẽ. Cặp phương trình ${{x}_{1}},{{x}_{2}}$nào sau đây thỏa mãn điều kiện trên: 

A. ${{x}_{1}}=2sqrt{2}cos left( pi t-frac{pi }{4} right)$ và ${{x}_{2}}=2sqrt{2}cos left( pi t+frac{pi }{4} right)$              

B. ${{x}_{1}}=2cos left( pi t-frac{pi }{2} right)$ và ${{x}_{2}}=2cos left( pi t+frac{pi }{2} right)$

C. ${{x}_{1}}=6cos left( pi t+frac{pi }{2} right)$ và ${{x}_{2}}=2cos left( pi t-frac{pi }{2} 

right)$

D.${{x}_{1}}=4cos left( pi t+frac{pi }{3} right)$ và ${{x}_{2}}=4cos left( pi t-frac{pi }{3} right)$

Lời giải chi tiết

Dựa vào đồ thị ta có: $A=4cm,frac{T}{2}=1sRightarrow T=2sRightarrow omega =pi left( rad/s right)$

Tại thời điểm $t=0Rightarrow x=ARightarrow varphi =0$. Do đó $x=4cos left( pi t right)$. Chọn D

 

 

Lời giải chi tiết

Dựa vào đồ thị $Rightarrow $Phương trình gia tốc của vật là $a=150cos left( 10t right)cm/{{s}^{2}}$

$Rightarrow $Phương trình li độ của vật là$x=1,5cos left( 10t+pi  right)=-1,5cos left( 10t right)cm/s$. Chọn C

<img src=”https://tuhoc365.vn/wp-content/uploads/2020/03/1583150642_chuong-1-dao-ong-co-03.042.png” width=”376″ height=”228″





Link Hoc va de thi 2021

Chuyển đến thanh công cụ