Sách bài tập Toán 11 Bài 16 (Kết nối tri thức): Giới hạn của hàm số


Giải SBT Toán 11 Bài 16: Giới hạn của hàm số

Bài 5.11 trang 83 SBT Toán 11 Tập 1: Cho hàm số fx=x    neu x>12    neu x=11   neu x<1 . Hàm số f(x) có giới hạn khi x → 1 không?

Lời giải:

Ta có limx1+fx=limx1+x=1 và limx1fx=limx11=1 .

Vậy limx1+fx=limx1fx=1 nên hàm số f(x) có giới hạn khi x → 1.

Bài 5.12 trang 83 SBT Toán 11 Tập 1: Tính các giới hạn sau:

a) limx24x+13x2 ;

b) limx1x3+x2+x3x31 ;

c) limx2+x25x+6x22 ;

d) limx0x2+x2x .

Lời giải:

a)limx24x+13x2=limx24x+132x24x+1+3

=limx24x2x24x+1+3=limx244x+1+3=23.

b)limx1x3+x2+x3x31=limx1x31+x21+x1x1x2+x+1

=limx1x1x2+x+1+x+1+1x1x2+x+1=limx1x2+2x+3x2+x+1=1+2+31+1+1=2.

c) limx2+x25x+6x22=limx2+x2x3x22=limx2+x3x2 .

Vì limx2+x2=0,limx2+x3=23=1<0 và x – 2 > 0 khi x → 2+, nên limx2+x3x2=.

Vậy limx2+x25x+6x22= .

d)limx0x2+x2x

Vì limx0x2+x2=0+02=2<0 , limx0x=0 và x < 0 nên limx0x2+x2x=+ .

Bài 5.13 trang 83 SBT Toán 11 Tập 1: Tìm a để hàm số fx=x2+ax    neu x>33x2+1     neu x3 có giới hạn khi x → 3.

Lời giải:

Ta có limx3+fx=limx3+x2+ax=32+3a=9+3a ;

limx3fx=limx33x2+1=3.32+1=28.

Do đó, hàm số f(x) có giới hạn khi x → 3 khi limx3+fx=limx3fx , tức là 9 + 3a = 28.

Suy ra a=193.

Bài 5.14 trang 83 SBT Toán 11 Tập 1: Tìm các số thực a và b sao cho limx12x2ax+1x23x+2=b .

Lời giải:

Vì x = 1 là nghiệm của đa thức x2 – 3x + 1 nên đa thức 2x2 – ax + 1 phải có nghiệm x = 1. Khi đó, 2 . 12 – a . 1 + 1 = 0, suy ra a = 3.

Do đó,

 limx12x2ax+1x23x+2=limx12x23x+1x23x+2=limx12x1x1x2x1

=limx12x1x2=2.1112=1.

Vậy b = – 1.

Bài 5.15 trang 83 SBT Toán 11 Tập 1: Cho hàm số fx=x2x+2x . Tính:

a) limx+fx ;

b) limxfx .

Lời giải:

a) limx+fx = limx+x2x+2x=limx+11x+2x21=1 .

b) limxfx = limxx2x+2x=limx11x+2x21=1 .

Bài 5.16 trang 83 SBT Toán 11 Tập 1: Tính giới hạn limx+1x1x21x3 .

Lời giải:

Ta có limx+1x1x21x3

=limx+x1x1x21x21x31x31

=limx+x61x11x211x31=

Bài 5.17 trang 83 SBT Toán 11 Tập 1: Cho hàm số gx=x2+2xx212m với m là tham số. Biết limx+gx=0 , tìm giá trị của m.

Lời giải:

Ta có gx=x2+2xx212m

=x2+2xx2+1x2+2x+x212m

=2x+1x2+2x+x212m

=2+1x1+2x2+11x22m

Do đó, limx+gx=limx+2+1x1+2x2+11x22m=222m=12m .

Mà limx+gx=0 nên 1 – 2m = 0, suy ra m=12 .

Bài 5.18 trang 83 SBT Toán 11 Tập 1: Cho m là một số thực. Biết limxmxmx+1= . Xác định dấu của m.

Lời giải:

Ta có limxmxmx+1=limxx2mx1m+1x .

Vì limxmx1m+1x=m nên để limxmxmx+1= thì – m < 0, có nghĩa là m > 0.

Vậy m > 0.

Bài 5.19 trang 83 SBT Toán 11 Tập 1: Cho hàm số fx=sin2xx2 . Chứng minh rằng limx+fx=0 .

Lời giải:

Lấy dãy số (xn) bất kì sao cho xn → +∞. Khi đó

fxn=sin2xnxn2=sin2xnxn21xn20 khi n → +∞.

Vậy limn+fxn=0. Từ đó suy ra limx+fx=0 .

Bài 5.20 trang 83 SBT Toán 11 Tập 1: Một đơn vị sản xuất hàng thủ công ước tính chi phí để sản xuất x đơn vị sản phẩm là C(x) = 2x + 55 (triệu đồng).

a) Tìm hàm số f(x) biểu thị chi phí trung bình để sản xuất mỗi đơn vị sản phẩm.

b) Tính limx+fx . Giới hạn này có ý nghĩa gì?

Lời giải:

a) Chi phí trung bình để sản xuất mỗi đơn vị sản phẩm là

fx=Cxx=2x+55x (triệu đồng).

b) Ta có limx+fx=limx+2x+55x=limx+2+55x1=2 .

Ý nghĩa của giới hạn trên: Khi số lượng sản phẩm sản xuất được càng lớn thì chi phí trung bình để sản xuất một đơn vị sản phẩm càng gần với 2 (triệu đồng).

Xem thêm các bài giải SBT Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Bài tập cuối chương 4

Bài 15: Giới hạn của dãy số

Bài 16: Giới hạn của hàm số

Bài 17: Hàm số liên tục

Bài tập cuối chương 5



Link Hoc va de thi 2024

Chuyển đến thanh công cụ