Bậc của đa thức a3 – 3a2 + 6a4 – 11a + 3a5 là:


Câu hỏi:

Cho đơn thức A=(12x2y3z).(143xy2z2).
a) Thu gọn đơn thức A.
b) Xác định hệ số và bậc của đơn thức A.
c) Tính giá trị của A khi x = 1; y = −1; z = 2.

Trả lời:

a) Ta có: \[A = \left( {\frac{{ – 1}}{2}{x^2}{y^3}z} \right)\,\,.\,\,\left( {\frac{{ – 14}}{3}x{y^2}{z^2}} \right)\]
\[ = \left( {\frac{{ – 1}}{2}\,.\,\,\frac{{ – 14}}{3}} \right).\,\left( {{x^2}.\,x} \right).\,\left( {{y^3}.\,{y^2}} \right)\left( {z\,.\,{z^2}} \right)\]
\[ = \frac{7}{3}\,.\,{x^{2\, + \,1}}.\,\,{y^{3\, + \,2}}.\,{z^{1\, + \,2}}\]
\[ = \frac{7}{3}{x^3}{y^5}{z^3}\].
Vậy \[A = \frac{7}{3}{x^3}{y^5}{z^3}\].
b) Đơn thức A có hệ số là \[\frac{7}{3}\].
Đơn thức \[\frac{7}{3}{x^3}{y^5}{z^3}\], biến x có số mũ là 3; biến y có số mũ là 5; biến z có số mũ là 3.
Tổng số mũ của các biến là 3 + 5 + 3 = 11.
Vậy đơn thức A có hệ số là \[\frac{7}{3}\] và có bậc là 11.
c) Thay x = 1; y = −1; z = 2 vào biểu thức A, ta được:
\[A = \frac{7}{3}{x^3}{y^5}{z^3} = \frac{7}{3}\,.\,{1^3}\,.\,{( – 1)^5}\,.\,{2^3} = – \frac{{56}}{3}\].

====== **** mời các bạn xem câu tiếp bên dưới **** =====



Link Hoc va de thi 2021

Chuyển đến thanh công cụ