Giải bài tập Bài 1: Hàm số lượng giác – Đại số 11 CB – Sách Toán


Giải bài tập SGK Toán 11 Bài 1: Hàm số lượng giác
====================

1. Giải bài 1 trang 17 SGK Đại số & Giải tích 11

Hãy xác định các giá trị của x trên đoạn  (small left [- pi ;frac{3 pi }{2} right ]) để hàm số (small y = tanx)

a) Nhận giá trị bằng 0

b) Nhận giá trị bằng 1  

c) Nhận giá trị dương 

d) Nhận giá trị âm.  

Phương pháp giải

Quan sát đồ thị hàm số, tìm các điểm thỏa mãn yêu cầu bài toán.

Hướng dẫn giải

Câu a: 

Trong đoạn (displaystyleleft[ { – pi ;{{3pi } over 2}} right]),

Trục hoành cắt đồ thị hàm số (y = tan x) tại ba điểm có hoành độ (- π ; 0 ; π).

Vậy (x = – π; x = 0 ; x = π).

Câu b: 

Đường thẳng (y = 1) cắt đồ thị (y = tan x) tại ba điểm có hoành độ (displaystyle {pi  over 4};{pi  over 4} pm pi ).

Vậy (displaystyle x =  – {{3pi } over 4};,,x = {pi  over 4};,,x = {{5pi } over 4}).

Câu c: 

Trong các khoảng (displaystyleleft( { – pi ; – {pi  over 2}} right)); (displaystyleleft( {0;{pi  over 2}} right)); (displaystyle left( {pi ;{{3pi } over 2}} right)), đồ thị hàm số nằm phía trên trục hoành.

Vậy (displaystyle x in left( { – pi ; – {pi  over 2}} right) cup left( {0;{pi  over 2}} right) cup left( {pi ;{{3pi } over 2}} right))

Câu d: 

Trong các khoảng (displaystyleleft( { – {pi  over 2};0} right),left( {{pi  over 2};pi } right)), đồ thị hàm số nằm phía dưới trục hoành.

Vậy (displaystyle x in left( { – {pi  over 2};0} right) cup left( {{pi  over 2};pi } right)).

2. Giải bài 2 trang 17 SGK Đại số & Giải tích 11

Tìm tập xác định của các hàm số

a) (small y=frac{1+cosx}{sinx})

b) (small y=sqrt{frac{1+cosx}{1- cosx}})

c) (small y=tan(x-frac{pi }{3}))

d) (small y=cot(x+frac{pi }{6}))

Phương pháp giải

a) Hàm số có dạng (y = frac{A}{B}) xác định khi và chỉ khi (B ne 0).

b) Hàm số có dạng (y = sqrt {frac{A}{B}} ) xác định khi và chỉ khi (left{ begin{array}{l}frac{A}{B} ge 0\B ne 0end{array} right.)

c) Hàm số (y = tan x) xác định khi và chỉ khi (x ne frac{pi }{2} + kpi ,,left( {k in Z} right))

d) Hàm số (y = cot x) xác định khi và chỉ khi (x ne kpi ,,left( {k in Z} right))

Hướng dẫn giải

Câu a: Hàm số (y=frac{1+cosx}{sinx}) xác định khi (sinxneq 0Leftrightarrow x neq k pi,kin mathbb{Z})

Vậy tập xác định của hàm số là (D=mathbb{R} setminus left { k pi,kin mathbb{Z} right })

Câu b: Hàm số (y=sqrt{frac{1+cosx}{1-cosx}}) xác định khi: (frac{{1 + cos x}}{{1 – cos x}} ge 0)

Ta thấy (cos x ge  – 1 Rightarrow 1 + cos x ge 0)

(cos x le 1 Rightarrow 1 – cos x ge 0).

Do đó (frac{{1 + cos x}}{{1 – cos x}} ge 0) với mọi (x) thỏa mãn (1 – cos x ne 0)

( Leftrightarrow cos x ne 1) ( Leftrightarrow x ne k2pi ,k in mathbb{Z})

Vậy tập xác định của hàm số là (D=mathbb{R} setminus left { k 2 pi,kin mathbb{Z} right })

Câu c: Hàm số xác định khi (cosleft ( x-frac{pi }{3} right )neq 0) (Leftrightarrow x-frac{pi }{3}neq frac{pi }{2}+kpi Leftrightarrow xneq frac{5pi }{6}+kpi (kin Z))

Vậy tập xác định của hàm số (D=mathbb{R} setminus left { frac{5pi }{6}+k pi ,kin Z right })

Câu d: Hàm số xác định khi (sin left ( x+frac{pi }{6} right )neq 0)

(Leftrightarrow x+frac{pi }{6}neq kpi Leftrightarrow xneq -frac{pi }{6}+kpi,kin Z)

Vậy tập xác định của hàm số là  (D=mathbb{R} setminus left { -frac{pi }{6}+k pi ,kin Z right })

3. Giải bài 3 trang 17 SGK Đại số & Giải tích 11

Dựa vào đồ thị hàm số (small y = sinx), hãy vẽ đồ thị của hàm số (small y = |sinx|)

Phương pháp giải

Phương pháp vẽ đồ thị hàm số (y = left| {fleft( x right)} right|)

  • Bước 1: Vẽ đồ thị hàm số (y = fleft( x right)).
  • Bước 2: Lấy đối xứng phần đồ thị phía dưới trục hoành của hàm số (y = fleft( x right)) qua trục Ox.
  • Bước 3: Xóa đi phần đồ thị phía dưới trục hoành của hàm số (y = fleft( x right)).

Hướng dẫn giải

Ta có

(left| {{mathop{rm s}nolimits} {rm{inx}}} right| = left{ matrix{
{mathop{rm s}nolimits} {rm{inx}},{mathop{rm s}nolimits} {rm{inx}} ge {rm{0}} hfill cr {rm{ – sinx}},{mathop{rm s}nolimits} {rm{inx}} le 0 hfill cr} right.)

Bước 1: Vẽ đồ thị hàm số (y=sin x).

Bước 2: Lấy đối xứng phần đồ thị phía dưới trục hoành của hàm số (y =sin x) qua trục Ox.

Bước 3: Xóa đi phần đồ thị phía dưới trục hoành của hàm số (y = sin x).

Khi đó ta được đồ thị hàm số (y = |sin x|) như sau:

4. Giải bài 4 trang 17 SGK Đại số & Giải tích 11

Chứng minh rằng (small sin2(x + k pi ) = sin 2x) với mọi số nguyên k. Từ đó vẽ đồ thị hàm số (small y = sin2x)

Phương pháp giải

Để vẽ được đồ thị hàm số lượng giác ta cần tìm được chu kì tuần hoàn của hàm số: (y = sin left( {ax + b} right),y = cos left( {ax + b} right)) với (ane 0) cho chu kì (T = frac{{2pi }}{{left| a right|}}.).

Hướng dẫn giải

Ta có (sin2(x+kpi)=sin(2x+2k pi)=sin2x, kin mathbb{Z}).

Từ đó suy ra hàm số y = sin2x là hàm số tuần hoàn chu kì (pi), mặt khác y = sin2x là hàm số lẻ, do đó ta vẽ đồ thị hàm số y = sin2x trên (left [ 0;frac{pi }{2} right ]), rồi lấy đối xứng qua O ta có đồ thị trên (left [ -frac{pi }{2};frac{pi }{2} right ]) rồi sử dụng phép tịnh tiến  (vec{v}= (pi; 0)) và (-vec{v}= (-pi; 0)) ta được đồ thị hàm số y = sin2x.

Xét y = sin2x trên (left [ 0;frac{pi }{2} right ]) ta có bảng biến thiên:

suy ra trên (left [ -frac{pi }{2};frac{pi }{2} right ]), y = sin2x có đồ thị dạng:

Do vậy đồ thị y = sin2x có dạng:

5. Giải bài 5 trang 18 SGK Đại số & Giải tích 11

Dựa vào đồ thị hàm số y = cosx, tìm các giá trị của x để cosx = (frac{1}{2})

Phương pháp giải

(cos x = dfrac{1}{2}) là phương trình xác định hoành độ giao điểm của đường thẳng (y= dfrac{1}{2}) và đồ thị (y = cos x).

Hướng dẫn giải

Vẽ đồ thị hàm số y = cosx và đường thẳng (y=frac{1}{2}) trên cùng một hệ trục toạ độ Oxy.

Để (cosx=frac{1}{2}) thì đường thẳng (y=frac{1}{2}) cắt đồ thị y = cosx. Dựa vào đồ thị suy ra (cosx=frac{1}{2}) khi (xin left { ….;-frac{7pi }{3};-frac{pi }{3};frac{pi }{3};frac{7pi }{3};…right }) hay (x=pm frac{pi }{3}+k2 pi (kin mathbb{Z}))

6. Giải bài 6 trang 18 SGK Đại số & Giải tích 11

Dựa vào đồ thị hàm số y = sinx, tìm các khoảng giá trị của x để hàm số đó nhận giá trị dương

Phương pháp giải

Tìm các khoảng chứa các điểm thuộc đồ thị hàm số (y=sin x) và nằm phía trên trục hoành trong khoảng ([-π ; π]) và dựa vào chu kì tuần hoàn của hàm số (y=sin x) suy ra tất cả các khoảng chứa các điểm thuộc đồ thị hàm số và nằm phía trên trục hoành.

Hướng dẫn giải

Vẽ đồ thị hàm số y = sinx.

Dựa vào đồ thị, suy ra y = sinx nhận giá trị dương khi: (xin left { …;(-2pi ;-pi );(0;pi );(2pi ;3pi );… right }) hay (xin left { k2 pi; pi + k2 pi right }) với (kin mathbb{Z})

7. Giải bài 7 trang 18 SGK Đại số & Giải tích 11

Dựa vào đồ thị hàm số y = cos x, tìm các khoảng giá trị của x để hàm số đó nhận giá trị âm

Phương pháp giải

Tìm các khoảng chứa các điểm thuộc đồ thị hàm số (y=cosx) và nằm phía dưới trục hoành trong khoảng ([0 ; 2π]) và dựa vào chu kì tuần hoàn của đồ thị hàm số (y=cosx) suy ra tất cả các khoảng chứa các điểm thuộc đồ thị hàm số và nằm phía dưới trục hoành.

Hướng dẫn giải

Vẽ đồ thị hàm số y = cosx.

Dựa vào đồ thị hàm số, suy ra y = cosx nhận giá trị âm khi:

(x in left { …left ( -frac{7pi}{2};-frac{5pi}{2} right ); left ( -frac{5pi}{3};-frac{3pi}{2} right ); left ( -frac{3pi}{2};-frac{pi}{2} right ); left (frac{pi}{2};frac{3pi}{2} right ) ; left (frac{3pi}{2};frac{5pi}{2} right );… right })

hay (xin left ( frac{pi }{2}+k2 pi;frac{3pi}{2}+k2pi right ),kin Z)

8. Giải bài 8 trang 18 SGK Đại số & Giải tích 11

Tìm giá trị lớn nhất của hàm số

a) (y=2sqrt{cosx}+1)

b) (y=3-2sinx)

Phương pháp giải

Sử dụng tập giá trị của hàm sin và cos: ( – 1 le sin x le 1;,, – 1 le cos x le 1).

Hướng dẫn giải

Câu a: Ta có (cosx leq 1 forall x.)

(Rightarrow 2sqrt{cosx}+1leq 2.sqrt{1}+1=3)

⇒ max y =3 khi cosx = 1 hay khi (x = k pi)

Câu b: Ta có (sinxgeq -1 forall xRightarrow 3-2sinxleq 3+2.1=5)

Vậy max y = 5 khi sinx = -1 hay (x=-frac{pi }{2}+k2 pi.)



Link Hoc va de thi 2021

Chuyển đến thanh công cụ