Giải bài tập Toán lớp 11 Bài 2: Giới hạn của hàm số
Câu hỏi khởi động trang 65 Toán 11 Tập 1: Hình 5 biểu diễn đồ thị hàm số vận tốc theo biến số t (t là thời gian, đơn vị: giây). Khi các giá trị của biến số t dần tới 0,2 (s) thì các giá trị tương ứng của hàm số v(t) dần tới 0,070 (m/s)..
Trong toán học, giá trị 0,070 biểu thị khái niệm gì của hàm số v(t) khi các giá trị của biến số t dần tới 0,2?
Lời giải:
Sau bài học này chúng ta sẽ biết:
Trong toán học giá trị 0,070 được gọi là giới hạn của hàm số khi x tiến tới 0,2.
I. Giới hạn hữu hạn của hàm số tại một điểm
Hoạt động 1 trang 65 Toán 11 Tập 1: Xét hàm số f(x) = 2x.
a) Xét dãy số (xn), với xn = 1+. Hoàn thành bảng giá trị f(xn) tướng ứng.
Các giá trị tương ứng của hàm số f(x1), f(x2), …, f(xn), … lập thành một dãy số mà ta kí hiệu là (f(xn)). Tìm limf(xn).
b) Chứng minh rằng với dãy số bất kì (xn), xn → 1 ta luôn có f(xn) → 2.
Lời giải:
a) Ta có bảng giá trị sau:
x |
x1 = 2 |
|
|
|
… |
|
… |
f(x) |
f(x1) = 4 |
f(x2) = 3 |
|
|
… |
|
… |
Ta có: limf(xn) = lim=2.
b) Lấy dãy (xn) bất kí thỏa mãn xn → 1 ta có:
f(xn) = 2xn
⇒ = 2.1=2.
Luyện tập 1 trang 67 Toán 11 Tập 1: Sử dụng định nghĩa, chứng minh rằng: =4.
Lời giải:
Đặt f(x) = x2
Giả sử (xn) là dãy số thỏa mãn limxn = 2.
⇒ limf(xn) = lim=4.
Vậy =4.
Hoạt động 2 trang 67 Toán 11 Tập 1: Cho hàm số f(x) = x2 – 1, g(x) = x + 1.
a) f(x)và g(x).
b) và so sánh với .
c) và so sánh với .
d) và so sánh với .
e) và so sánh với .
Lời giải:
a) Giả sử (xn) là dãy số bất kì thỏa mãn limxn = 1. Khi đó ta có:
-1 = 1-1 = 0.
limf(x) = 0.
limg(xn) = lim(xn+1) = limxn+1 = 2
limg(x) = 2.
b) Ta có: f(x) + g(x) = x2 – 1 + x + 1 = x2 + x
(xn) là dãy số bất kì thỏa mãn limxn = 1. Khi đó ta có:
.
.
Ta lại có: = 0 + 2 =2.
Vậy =2.
c) Ta có: f(x) – g(x) = x2 – 1 – x – 1 = x2 – x – 2
(xn) là dãy số bất kì thỏa mãn limxn = 1. Khi đó ta có:
.
Ta lại có: = 0-2 = -2.
Vậy = -2.
d) Ta có: f(x).g(x) = (x2 – 1)(x + 1) = x3 + x2 – x – 1
(xn) là dãy số bất kì thỏa mãn limxn = 1. Khi đó ta có:
-1 = 13+12-1-1 = 0
=0.
Ta lại có: = 0.2 = 0.
Vậy .
e) Ta có:
(xn) là dãy số bất kì thỏa mãn limxn = 1. Khi đó ta có:
= 0.
= 0.
Ta lại có: =0
Vậy .
Luyện tập 2 trang 68 Toán 11 Tập 1: Tính:
a) ;
b) .
Lời giải:
a) = 3.8 = 24.
b) = 3.
Hoạt động 3 trang 68 Toán 11 Tập 1: Cho hàm số f(x) = . Hàm số f(x) có đồ thị ở Hình 6.
a) Xét dãy số (un) sao cho un < 0 và lim un = 0. Xác định f(un) và tìm lim f(un).
b) Xét dãy số (vn) sao cho vn > 0 và lim vn = 0. Xác định f(vn) và tìm limf(vn).
Lời giải:
a) Xét dãy số (un) sao cho un < 0 và lim un = 0. Khi đó f(un) = – 1 và lim f(un) = – 1.
b) Xét dãy số (vn) sao cho vn > 0 và lim vn = 0. Khi đó f(vn) = 1 và lim f(vn) = 1.
Luyện tập 3 trang 69 Toán 11 Tập 1: Tính .
Lời giải:
Ta có: = 0-4 = -4.
II. Giới hạn hữu hạn của hàm số tại vô cực
Hoạt động 4 trang 69 Toán 11 Tập 1: Cho hàm số f(x) = (x0)có đồ thị như ở Hình 7. Quan sát đồ thị đó và cho biết:
a) Khi biến x dần tới dương vô cực thì f(x) dần tới giá trị nào.
b) Khi biến x dần tới âm vô cực thì f(x) dần tới giá trị nào.
Lời giải:
Dựa vào đồ thị ta thấy:
a) Hàm số f(x) tiến dần tới giá trị 0 khi x dần tới dương vô cực.
b) Hàm số tiến dần tới âm vô cực thì giá trị f(x) gần tới giá trị 0.
Luyện tập 4 trang 70 Toán 11 Tập 1: Tính .
Lời giải:
.
III. Giới hạn vô cực (một phía) của hàm số tại một điểm
Hoạt động 5 trang 70 Toán 11 Tập 1: Cho hàm số f(x) = có đồ thị như Hình 8. Quan sát đồ thị đó và cho biết:
a) Khi biến x dần tới 1 về bên phải thì f(x) dần tới đâu.
b) Khi biến x dần tới 1 về bên trái thì f(x) dần tới đâu.
Lời giải:
a) Khi biến x dần tới 1 về bên phải thì f(x) dần tới +∞.
b) Khi biến x dần tới 1 về bên trái thì f(x) dần tới – ∞.
Luyện tập 5 trang 71 Toán 11 Tập 1: Tính .
Lời giải:
.
IV. Giới hạn vô cực của hàm số tại vô cực
Hoạt động 6 trang 71 Toán 11 Tập 1: Cho hàm số f(x) = x có đồ thị như Hình 9. Quan sát đồ thị đó và cho biết:
a) Khi biến x dần tới dương vô cực thì f(x) dần tới đâu.
b) Khi biến x dần tới âm vô cực thì f(x) dần tới đâu.
Lời giải:
Dựa vào đồ thị hàm số, ta thấy:
a) Khi biến x dần tới dương vô cực thì f(x) dần tới dương vô cùng.
b) Khi biến x dần tới âm vô cực thì f(x) dần tới âm vô cùng.
Luyện tập 6 trang 72 Toán 11 Tập 1: Tính .
Lời giải:
.
Bài tập
Bài 1 trang 72 Toán 11 Tập 1: Sử dụng định nghĩa, tìm các giới hạn sau:
a) ;
b) .
Lời giải:
a)
b) (x+5) = 10.
Bài 2 trang 72 Toán 11 Tập 1: Biết rằng hàm số f(x) thỏa mãn f(x) = 3và f(x) = 5. Trong trường hợp này có tồn tại giới hạn f(x) hay không? Giải thích.
Lời giải:
Ta có: f(x) = 3và f(x) = 5suy ra f(x) = 35= f(x) nên không tồn tại f(x).
Bài 3 trang 72 Toán 11 Tập 1: Tính các giới hạn sau:
a) (x2-4x+3);
b) ;
c) .
Lời giải:
a) (x2-4x+3) = 22-4.2+3 = -1.
b) .
c) .
Bài 4 trang 72 Toán 11 Tập 1: Tính các giới hạn sau:
a) ;
b) ;
c) ;
d) ;
e) ;
f) .
Lời giải:
Bài 5 trang 72 Toán 11 Tập 1: Một công ty sản xuất máy tính đã xác định được rằng, trung bình một nhân viên có thể lắp ráp được N(t) = bộ phận mỗi ngày sau t ngày đào tạo. Tính N(t)và cho biết ý nghĩa của kết quả.
Lời giải:
Ta có: = 50.
Ý nghĩa: Tối đa một nhân viên chỉ có thể lắp được 50 bộ phận mỗi ngày.
Bài 6 trang 72 Toán 11 Tập 1: Chi phí (đơn vị: nghìn đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số: C(x) = 50 000 + 105x.
a) Tính chi phí trung bình (x)để sản xuất một sản phẩm.
b) Tính và cho biết ý nghĩa của kết quả.
Lời giải:
a) Chi phí trung bình (x)để sản xuất một sản phẩm là:
(sản phẩm).
b) Ta có:
.
Ý nghĩa: Khi số sản phẩm sản xuất ra ngày càng nhiều thì chi phí trung bình chỉ tối đa là 105 nghìn đồng.
Xem thêm các bài giải SGK Toán lớp 11 Cánh diều hay, chi tiết khác:
Bài 1: Giới hạn của dãy số
Bài 2: Giới hạn của hàm số
Bài 3: Hàm số liên tục
Bài tập cuối chương 3
==== ~~~~~~ ====