Lý thuyết phần phương trình nghiệm phứcthi ĐGNL ĐHQG TP.HCM


I. Căn bậc hai của số phức

– Số phức (w = x + yileft( {x,y in R} right)) là căn bậc hai của số phức (z = a + bi) nếu ({w^2} = z).

– Mọi số phức (z ne 0) đều có hai căn bậc hai là hai số đối nhau (w) và ( – w)

– Số thực (a > 0) có hai căn bậc hai là ( pm sqrt a ); số thực (a < 0) có hai căn bậc hai là ( pm isqrt {left| a right|} ).

II. Phương trình bậc hai nghiệm phức

Xét phương trình bậc hai tổng quát: (A{z^2} + Bz + C = 0left( {A ne 0} right)).

– Biệt thức (Delta  = {B^2} – 4AC).

+ Nếu (Delta  = 0) thì phương trình có nghiệm kép ({z_{1,2}} =  – dfrac{B}{{2A}})

+ Nếu (Delta  ne 0) thì phương trình có hai nghiệm phân biệt ({z_{1,2}} = dfrac{{ – B pm sqrt Delta  }}{{2A}}) (ở đó (sqrt Delta  ) là kí hiệu căn bậc hai của số phức (Delta ))

– Hệ thức Vi-et: (left{ begin{array}{l}{z_1} + {z_2} =  – dfrac{B}{A}\{z_1}{z_2} = dfrac{C}{A}end{array} right.)

III. Giải phương trình bậc hai

Phương pháp:

– Bước 1: Tính (Delta  = {B^2} – 4AC).

– Bước 2: Tìm các căn bậc hai của (Delta )

– Bước 3: Tính các nghiệm:

+ Nếu (Delta  = 0) thì phương trình có nghiệm kép ({z_{1,2}} =  – dfrac{B}{{2A}})

+ Nếu (Delta  ne 0) thì phương trình có hai nghiệm phân biệt ({z_{1,2}} = dfrac{{ – B pm sqrt Delta  }}{{2A}}) (ở đó (sqrt Delta  ) là kí hiệu căn bậc hai của số phức (Delta ))

Ví dụ: Tìm tập nghiệm của phương trình ({z^2} + z + 1 = 0).

Giải:

Ta có: (Delta  = {1^2} – 4.1.1 =  – 3), các căn bậc hai của ( – 3) là (isqrt 3 ) và ( – isqrt 3 )

Do đó phương trình có nghiệm ({z_1} = dfrac{{ – 1 + isqrt 3 }}{2}) và ({z_2} = dfrac{{ – 1 – isqrt 3 }}{2}).

Vậy tập nghiệm của phương trình (S = left{ {dfrac{{ – 1 – isqrt 3 }}{2};dfrac{{ – 1 + isqrt 3 }}{2}} right})

IV. Sử dụng Vi-et để giải bài toán liên quan đến hai nghiệm của phương trình bậc hai

Phương pháp:

– Bước 1: Nêu định lý vi-et.

– Bước 2: Biểu diễn biểu thức cần tính giá trị để làm xuất hiện tổng và tích hai nghiệm.

– Bước 3: Thay các giá trị tổng và tích vào biểu thức để tính giá trị.

Ví dụ: Biết phương trình (2{z^2} + 4z + 3 = 0) có hai nghiệm phức ({z_1},,,{z_2}). Tính giá trị của $|z_1+z_2|$.

Giải:

Theo định lý Vi-et ta có: $z_1+z_2=-dfrac{4}{2}=-2$

=>$|z_1+z_2|=2$

V. Giải phương trình nghiệm phức bậc cao

Phương pháp:

Sử dụng các phép biến đổi (phân tích thành nhân tử, đặt ẩn phụ,…) đưa phương trình bậc cao về các phương trình bậc nhất, bậc hai,…để giải phương trình.

Ví dụ: Giải phương trình ({z^4} + 1 = 0).

Giải:

Ta có: ({z^4} + 1 = 0 Leftrightarrow {z^4} – {i^2} = 0 Leftrightarrow left( {{z^2} – i} right)left( {{z^2} + i} right) = 0 Leftrightarrow left[ begin{array}{l}{z^2} = ileft( 1 right)\{z^2} =  – ileft( 2 right)end{array} right.)

Giải (1): Ta tìm căn bậc hai của số phức (z’ = i).

Gọi (w = x + yileft( {x,y in R} right)) là một căn bậc hai của số phức (z’ = i). Khi đó:

({w^2} = i Leftrightarrow left{ begin{array}{l}{x^2} – {y^2} = 0\2xy = 1end{array} right. Leftrightarrow left[ begin{array}{l}left{ begin{array}{l}x = y\2{x^2} = 1end{array} right.\left{ begin{array}{l}x =  – y\ – 2{y^2} = 1(L)end{array} right.end{array} right. Leftrightarrow left[ begin{array}{l}x = y = dfrac{1}{{sqrt 2 }}\x = y =  – dfrac{1}{{sqrt 2 }}end{array} right. \ Rightarrow left( 1 right) Leftrightarrow left[ begin{array}{l}z = dfrac{1}{{sqrt 2 }} + dfrac{1}{{sqrt 2 }}i\z =  – dfrac{1}{{sqrt 2 }} – dfrac{1}{{sqrt 2 }}iend{array} right.)

Giải (2): Ta tìm căn bậc hai của số phức (z’ =  – i)

Vì (z’ =  – i = {i^2}.i) nên các căn bậc hai của (z’) là (i.left( {dfrac{1}{{sqrt 2 }} + dfrac{1}{{sqrt 2 }}i} right) =  – dfrac{1}{{sqrt 2 }} + dfrac{1}{{sqrt 2 }}i) và (ileft( { – dfrac{1}{{sqrt 2 }} – dfrac{1}{{sqrt 2 }}i} right) = dfrac{1}{{sqrt 2 }} – dfrac{1}{{sqrt 2 }}i)

Vậy phương trình có các nghiệm ({z_1} = dfrac{1}{{sqrt 2 }} + dfrac{1}{{sqrt 2 }}i;{z_2} =  – dfrac{1}{{sqrt 2 }} – dfrac{1}{{sqrt 2 }}i;{z_3} =  – dfrac{1}{{sqrt 2 }} + dfrac{1}{{sqrt 2 }}i;{z_4} = dfrac{1}{{sqrt 2 }} – dfrac{1}{{sqrt 2 }}i).





Link Hoc va de thi 2021

Chuyển đến thanh công cụ