Lý thuyết Phương trình lượng giác cơ bản (Cánh diều 2023) hay, chi tiết | Toán lớp 11


Lý thuyết Toán lớp 11 Bài 4: Phương trình lượng giác cơ bản
A. Lý thuyết Phương trình lượng giác cơ bản
1. Khái niệm phương trình tương đương
– Hai phương trình (cùng ẩn) được gọi là tương đương khi chúng có cùng tập nghiệm.
– Nếu phương trình f(x) =0 tương đương với phương trình g(x) =0 thì ta viết f(x)=0g(x)=0
*Chú ý: Hai phương trình vô nghiệm là hai phương trình tương đương.
– Các phép biến đổi tương đương:
+ Cộng hay trừ hai vế với cùng một số hoặc cùng một biểu thức.
+ Nhân hoặc chia 2 vế với cùng một số khác 0 hoặc với cùng một biểu thức luôn có giá trị khác 0.
2. Phương trình sinx=m
Phương trình sinx=m có nghiệm khi và chỉ khi |m|1.
Khi |m|1sẽ tồn tại duy nhất α[π2;π2] thoả mãn sinα=m. Khi đó:
sinx=msinx=sinα [x=α+k2πx=πα+k2π(kZ)
* Chú ý:
a, Nếu số đo của góc αđược cho bằng đơn vị độ thì sinx=sinαo[x=αo+k360ox=180oαo+k360o(kZ)
b, Một số trường hợp đặc biệt
sinx=0x=kπ,kZ.sinx=1x=π2+k2π,kZ.sinx=1x=π2+k2π,kZ.
3. Phương trình cosx=m
Phương trình cosx=m có nghiệm khi và chỉ khi |m|1.
Khi |m|1 sẽ tồn tại duy nhất α[0;π] thoả mãn cosα=m. Khi đó:
cosx=mcosx=cosα [x=α+k2πx=α+k2π(kZ)
* Chú ý:
a, Nếu số đo của góc αđược cho bằng đơn vị độ thì cosx=cosαo[x=αo+k360ox=αo+k360o(kZ)
b, Một số trường hợp đặc biệt
cosx=0x=π2+kπ,kZ.cosx=1x=k2π,kZ.cosx=1x=π+k2π,kZ.
4. Phương trình tanx=m
Phương trình tanx=mcó nghiệm với mọi m.
Với mọi mR, tồn tại duy nhất α(π2;π2) thoả mãn tanα=m. Khi đó:
tanx=mtanx=tanαx=α+kπ,kZ.
*Chú ý: Nếu số đo của góc αđược cho bằng đơn vị độ thì
tanx=tanαox=αo+k180o,kZ.
5. Phương trình cotx=m
Phương trình cotx=mcó nghiệm với mọi m.
Với mọi mR, tồn tại duy nhất α(0;π) thoả mãn cotα=m. Khi đó:
cotx=mcotx=cotαx=α+kπ,kZ.
*Chú ý: Nếu số đo của góc αđược cho bằng đơn vị độ thì
cotx=cotαox=αo+k180o,kZ.
6. Sử dụng máy tính cầm tay tìm góc khi biết giá trị lượng giác của nó
Bước 1. Chọn đơn vị đo góc (độ hoặc radian).
Muốn tìm số đo độ, ta ấn: SHIFT MODE 3 (CASIO FX570VN).
Muốn tìm số đo radian, ta ấn: SHIFT MODE 4 (CASIO FX570VN).
Bước 2. Tìm số đo góc.
Khi biết SIN, COS, TANG của góc αta cần tìm bằng m, ta lần lượt ấn các phím SHIFT và một trong các phím SIN, COS, TANG rồi nhập giá trị lượng giác m và cuối cùng ấn phím  “BẰNG =”. Lúc này trên màn hình cho kết quả là số đo của góc α

 
B. Bài tập Phương trình lượng giác cơ bản
Đang cập nhật …
Xem thêm các bài tóm tắt lý thuyết Toán lớp 11 Cánh diều hay, chi tiết khác:
Lý thuyết Bài 3: Hàm số lượng giác và đồ thị
Lý thuyết Bài 4: Phương trình lượng giác cơ bản
Lý thuyết Bài 1: Dãy số
Lý thuyết Bài 2: Cấp số cộng
Lý thuyết Bài 3: Cấp số nhân
Lý thuyết Bài 1: Giới hạn của dãy số
Xem thêm các bài tóm tắt lý thuyết chương Toán lớp 11 Cánh diều hay, chi tiết khác:
Lý thuyết Chương 1: Hàm số lượng giác và phương trình lượng giác
Lý thuyết Chương 2: Dãy số. Cấp số cộng. Cấp số nhân
Lý thuyết Chương 3: Giới hạn. Hàm số liên tục
Lý thuyết Chương 4: Đường thẳng và mặt phẳng trong không gian. Quan hệ song song

==== ~~~~~~ ====



Link Hoc va de thi 2021

Chuyển đến thanh công cụ