Đề thi HK1 môn Toán 12 năm 2023-2024 Trường THPT Nguyễn Thị Diệu


  • Câu 1:

    Tìm TXĐ của hàm số  \(y={{\left( {{x}^{2}}-3\text{x}+2 \right)}^{\frac{1}{2}}}\)?

    • A.
      \(D=\left( 1;2 \right)\)

    • B.
      \(D=\left[ 1;2 \right]\)

    • C.
      \(D=\left( -\infty ;1 \right]\cup \left[2;+\infty  \right)\)

    • D.
      \(D=\left( -\infty ;1 \right)\cup \left( 2;+\infty  \right)\)

  • Câu 2:
    Mã câu hỏi: 462979

    Tìm GTNN của hàm số \(y={{e}^{x}}\) trên đoạn \(\left[ -1;1 \right]\)?

    • A.
      \(0\) 

    • B.
      \(\frac{1}{e}\) 

    • C.
      \(1\) 

    • D.
      \(e\) 

  •  

  • Câu 3:
    Mã câu hỏi: 462982

    Hàm số \(y=-16{{\text{x}}^{4}}+x-1\) nghịch biến trong khoảng nào dưới đây? 

    • A.
      \(\left( \frac{1}{4};+\infty  \right)\).

    • B.
      \(\left( -\infty ;\frac{1}{4} \right)\). 

    • C.
      \(\left( 0;+\infty  \right)\). 

    • D.
      \(\left( -\infty ;0 \right)\). 

  • Câu 4:
    Mã câu hỏi: 462985

    Tìm giá trị của x biết \({{\log }_{3}}x=4{{\log }_{3}}a+7{{\log }_{3}}b\)?

    • A.
      \(x={{a}^{3}}{{b}^{7}}\). 

    • B.
      \(x={{a}^{4}}{{b}^{7}}\). 

    • C.
      \(x={{a}^{4}}{{b}^{6}}\). 

    • D.
      \(x={{a}^{3}}{{b}^{6}}\).

  • Câu 5:
    Mã câu hỏi: 462991

    Cho hàm số \(y={{x}^{3}}-3\text{x}\). Giá trị CĐ và CT của hàm số lần lượt là?

    • A.
      \(-1\) và \(1\). 

    • B.
      \(1\) và \(-1\). 

    • C.
      \(-2\) và \(2\). 

    • D.
      \(2\) và \(-2\). 

  • Câu 6:
    Mã câu hỏi: 462993

    Tìm tập nghiệm S của BPT \(\sqrt{{{\log }_{2}}\left( x-1 \right)}\le 1\)? 

    • A.
      \(S=\left[ 2;3 \right]\)

    • B.
      \(S=\left( 1;3 \right]\) 

    • C.
      \(S=\left( 1;3 \right)\) 

    • D.
      \(S=\left( 1;+\infty  \right)\) 

  • Câu 7:
    Mã câu hỏi: 462995

    Nếu độ dài cạnh của 1 hình lập phương gấp lên k lần, với \(k\in {{\mathbb{R}}^{*}}\), thì thể tích của nó gấp lên bao nhiêu lần ? 

  • Câu 8:
    Mã câu hỏi: 462999

    Cho hình chóp tứ giác đều cạnh đáy bằng a, góc giữa mặt bên và đáy bằng \({{45}^{0}}\). Thể tích V của khối chóp là?

    • A.
      \(V=\frac{{{a}^{3}}}{6}\).

    • B.
      \(V=\frac{{{a}^{3}}}{4}\).

    • C.
      \(V=2{{\text{a}}^{3}}\).

    • D.
      \(V={{\text{a}}^{3}}\). 

  • Câu 9:
    Mã câu hỏi: 463002

    Cho hình chóp tứ giác S.ABCD có đáy ABCD  là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy và \(SA=a\sqrt{3}\). Hãy tính thể tích \(V_{S.ABCD}\)? 

    • A.
      \(V=\frac{\sqrt{3}{{a}^{3}}}{6}\). 

    • B.
      \(V=\sqrt{3}{{\text{a}}^{3}}\). 

    • C.
      \(V=\frac{\sqrt{3}{{a}^{3}}}{4}\). 

    • D.
      \(V=\frac{\sqrt{3}{{a}^{3}}}{3}\). 

  • Câu 10:
    Mã câu hỏi: 463007

    Cho hàm số \(y=\dfrac{2\text{x}+1}{x-1}\). Trong các mệnh đề dưới, mệnh đề nào sai? 

    • A.
      Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x=-\dfrac{1}{2}\). 

    • B.
      Đồ thị hàm số có tiệm cận ngang là đường thẳng  \(y=2\). 

    • C.
      Đồ thị hàm số cắt trục tung tại điểm có tung độ là \(-1\). 

    • D.
      Hàm số nghịch biến trên từng khoảng xác định. 

  • Câu 11:
    Mã câu hỏi: 463013

    Cho biết hàm số \(y=\frac{1}{4}{{x}^{4}}-\frac{1}{2}{{x}^{2}}\) có bao nhiêu cực trị? 

  • Câu 12:
    Mã câu hỏi: 463020

    Giải phương trình sau \({{\log }_{3}}\left( x-1 \right)=2\)?

    • A.
      \(x=10\). 

    • B.
      \(x=9\).

    • C.
      \(x=1\).

    • D.
      \(x=8\). 

  • Câu 13:
    Mã câu hỏi: 463029

    Tìm số nghiệm của phương trình sau \({{e}^{2\text{x}}}+2={{e}^{4\text{x}}}\)?

  • Câu 14:
    Mã câu hỏi: 463033

    Tìm tất cả các giá trị thực của tham số m sao cho HS \(y={{x}^{3}}+3{{\text{x}}^{2}}+m\text{x}-1\) không có cực trị?

    • A.
      \(m>3\). 

    • B.
      \(m\ge 3\). 

    • C.
      \(m<3\). 

    • D.
      \(m\le 3\).

  • Câu 15:
    Mã câu hỏi: 463043

    Tìm GTLN của hàm số \(y=x-\frac{1}{x}\) trên đoạn \(\left[ \frac{1}{2};3 \right]\)?

    • A.
      \(2\). 

    • B.
      \(\frac{5}{2}\). 

    • C.
      \(1\). 

    • D.
      \(\frac{8}{3}\). 

  • Câu 16:
    Mã câu hỏi: 463049

    Cho \(x\in \left( 0;\frac{\pi }{2} \right)\). Tính giá trị của biểu thức \(A=\log \operatorname{tanx}+\log \operatorname{cotx}\)? 

  • Câu 17:
    Mã câu hỏi: 463058

    Cho hình chóp S.ABC có thể tích bằng V. Gọi M, N, P lần lượt là trung điểm của các cạnh BC, CA & AB. Thể tích khối chóp S.MNP?

    • A.
      \(\frac{V}{4}\) 

    • B.
      \(\frac{V}{3}\) 

    • C.
      \(\frac{4}{3}V\) 

    • D.
      \(\frac{2}{3}V\) 

  • Câu 18:
    Mã câu hỏi: 463066

    Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại B, \(AB=2\text{a},BC=a\sqrt{2}\), cạnh bên SA vuông góc với mp đáy và \(SA=a\sqrt{5}\). Tính diện tích \({{S}_{mc}}\) của mặt cầu ngoại tiếp hình chóp S.ABC? 

    • A.
      \({{S}_{mc}}=22\pi {{a}^{2}}\). 

    • B.
      \({{S}_{mc}}=11\pi {{a}^{2}}\). 

    • C.
      \({{S}_{mc}}=16\pi {{a}^{2}}\). 

    • D.
      \({{S}_{mc}}=\frac{11}{3}\pi {{a}^{2}}\). 

  • Câu 19:
    Mã câu hỏi: 463078

    Một hình hộp chữ nhật có 3 kích thước là 2; 3; 4 nội tiếp trong 1 mặt cầu. Tính diện tích mặt cầu này?

  • Câu 20:
    Mã câu hỏi: 463084

    Tìm TXĐ D của hàm số \(y={{\log }_{2}}\left( 2-x \right)\)?

    • A.
      \(D=\left( 2;+\infty  \right)\). 

    • B.
      \(D=\left( -\infty ;-2 \right]\). 

    • C.
      \(D=\left( -\infty ;2 \right)\). 

    • D.
      \(D=\left( -\infty ;2 \right]\). 

  • Câu 21:
    Mã câu hỏi: 463092

    Trong các mệnh đề dưới, mệnh đề nào sai?

    • A.
      Hai khối lăng trụ có diện tích đáy và chiều cao tương ứng  bằng nhau thì có thể tích bằng nhau.

    • B.
      Hai khối chóp có diện tích đáy và chiều cao tương ứng bằng nhau thì có thể tích bằng nhau. 

    • C.
      Hai khối hộp chữ nhật có diện tích toàn phần bằng nhau thì có thể tích bằng nhau. 

    • D.
      Hai khối lập phương có diện tích toàn phần bằng nhau thì có thể tích bằng nhau. 

  • Câu 22:
    Mã câu hỏi: 463096

    Tính giá trị biểu thức sau \(A={{\log }_{8}}12-{{\log }_{8}}15+{{\log }_{8}}20\)?

    • A.
      \(1\).

    • B.
      \(\frac{4}{3}\).

    • C.
      \(2\).

    • D.
      \(\frac{3}{4}\).

  • Câu 23:
    Mã câu hỏi: 463100

    Cho 3 điểm A, B, C thuộc một mặt cầu và \(\widehat{ACB}={{90}^{0}}\). Khẳng định nào dưới đây là khẳng định sai? 

    • A.
      Luôn có một đường tròn nằm trên mặt cầu sao cho đường tròn này ngoại tiếp tam giác ABC. 

    • B.
      Đường tròn qua ba điểm A,B,C nằm trên mặt cầu. 

    • C.
      AB là đường kính của đường tròn giao tuyến tạo bởi mặt cầu và mặt phẳng (ABC). 

    • D.
      AB là đường kính mặt cầu đã cho. 

  • Câu 24:
    Mã câu hỏi: 463103

    Tìm tất cả các giá trị thực của tham số m để ĐTHS \(y={{x}^{4}}-\left( m+1 \right){{x}^{2}}+m\) cắt trục hoành tại 4 điểm phân biệt?

    • A.
      \(\left( 0;+\infty  \right)\) 

    • B.
      \(\left( 0;+\infty  \right)\backslash \left\{ 1 \right\}\)

    • C.
      \(\left[ 0;+\infty  \right)\)

    • D.
      \(\left[ 0;+\infty  \right)\backslash \left\{ 1 \right\}\)

  • Câu 25:
    Mã câu hỏi: 463106

    Cho ĐTHS \(y=\frac{x-2}{x-1}\) cắt trục hoành và trục tung lần lượt tại A và B. Tính độ dài đoạn thẳng AB?

    • A.
      \(AB=2\).

    • B.
      \(AB=2\sqrt{2}\).

    • C.
      \(AB=1\).

    • D.
      \(AB=\sqrt{2}\).

  • Câu 26:
    Mã câu hỏi: 463108

    Tìm TXĐ của hàm số  \(y={{\left( x-\sqrt{x} \right)}^{-2}}\)?

    • A.
      \(D=\left( 0;+\infty  \right)\backslash \left\{ 1 \right\}\) 

    • B.
      \(D=\left( 0;+\infty  \right)\) 

    • C.
      \(D=\left[ 0;+\infty  \right)\) 

    • D.
      \(D=\left[ 0;+\infty  \right)\backslash \left\{ 1 \right\}\) 

  • Câu 27:
    Mã câu hỏi: 463120

    Cho HS \(f\left( x \right)=x{{e}^{x}}\). Trong các mệnh đề dưới, mệnh đề nào sai? 

    • A.
      Hàm số đạt cực tiểu tại\(x=-1\) 

    • B.
      Hàm số đạt cực đại tại\(x=-1\) 

    • C.
      Đồ thị hàm số có tiệm cận ngang 

    • D.
      Hàm số  đồng biến trên khoảng \(\left( -1;+\infty  \right)\) 

  • Câu 28:
    Mã câu hỏi: 463125

    Tìm tập nghiệm S của BPT sau \({{\log }_{0,5}}\left( x-1 \right)>{{\log }_{0,5}}\left( 2x-1 \right)\)?

    • A.
      \(\left( 0;+\infty  \right)\). 

    • B.
      \(\left( 1;+\infty  \right)\). 

    • C.
      \(\left( -\infty ;0 \right)\). 

    • D.
      \(\left( -\infty ;1 \right)\). 

  • Câu 29:
    Mã câu hỏi: 463130

    Cho biết hàm số \(y=-\frac{{{x}^{3}}}{3}-\frac{{{x}^{2}}}{2}+2\text{x}-5\) đồng biến trên khoảng nào? 

    • A.
      \(\left( 1;+\infty  \right)\). 

    • B.
      \(\left( -\infty ;1 \right)\). 

    • C.
      \(\left( -2;1 \right)\).

    • D.
      \(\left( -\infty ;-2 \right)\). 

  • Câu 30:
    Mã câu hỏi: 463138

    Cho \(0<a\ne 1,b,c>0\). Trong các mệnh đề dưới đây, mệnh đề nào đúng?

    • A.
      \({{\log }_{a}}b+{{\log }_{a}}c=c{{\log }_{a}}b\) 

    • B.
      \({{\log }_{a}}b+{{\log }_{a}}c=b{{\log }_{a}}c\) 

    • C.
      \({{\log }_{a}}b+{{\log }_{a}}c={{\log }_{a}}\left( b+c \right)\) 

    • D.
      \({{\log }_{a}}b+{{\log }_{a}}c={{\log }_{a}}\left( bc \right)\)

  • Câu 31:
    Mã câu hỏi: 463142

    Tìm tất cả các giá trị thực của tham số m sao cho ĐTHS \(y=\frac{x-1}{{{x}^{2}}-x+m}\) có đúng 1 đường tiệm cận?

    • A.
      \(m\le \frac{1}{4}\).

    • B.
      \(m\ge \frac{1}{4}\).

    • C.
      \(m>\frac{1}{4}\). 

    • D.
      \(m=\frac{1}{4}\).

  • Câu 32:
    Mã câu hỏi: 463164

    Cho \({{\log }_{2}}\left( {{\log }_{3}}\left( {{\log }_{4}}x \right) \right)={{\log }_{3}}\left( {{\log }_{4}}\left( {{\log }_{2}}y \right) \right)\) \(={{\log }_{4}}\left( {{\log }_{2}}\left( {{\log }_{3}}z \right) \right)=0\). Hãy tính giá trị của \(S=x+y+z\)?

    • A.
      \(S=105\). 

    • B.
      \(S=89\). 

    • C.
      \(S=98\). 

    • D.
      \(S=88\). 

  • Câu 33:
    Mã câu hỏi: 463174

    Cho hàm số \(y=\frac{{{x}^{3}}}{3}-\frac{{{x}^{2}}}{2}+1\). Trong các mệnh đề dưới đây, mệnh đề nào đúng? 

    • A.
      Hàm số đạt cực đại tại \(x=1\).

    • B.
      Hàm số nghịch biến trên khoảng \(\left( 1;+\infty  \right)\).

    • C.
      Hàm số nghịch biến trên khoảng \(\left( 0;1 \right)\) 

    • D.
      Hàm số đồng biến trên \(\mathbb{R}\) 

  • Câu 34:
    Mã câu hỏi: 463180

    Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại A. Biết SA vuông góc với mp (ABC) và \(SA=1;AB=2,AC=3\). Tính bán kính r của mặt cầu đi qua các đỉnh A, B, C, S?

  • Câu 35:
    Mã câu hỏi: 463186

    Tìm tập nghiệm S của BPT \(\left( 3\text{x}-8 \right)\ln \left( 2\text{x}+1 \right)>0\)?

    • A.
      \(S=\left( -\frac{1}{2};2 \right)\cup \left( \frac{8}{3};+\infty  \right)\) 

    • B.
      \(S=\left( -\frac{1}{2};0 \right)\cup \left( 0;\frac{8}{3} \right)\) 

    • C.
      \(S=\left( -\frac{1}{2};\frac{8}{3} \right)\) 

    • D.
      \(S=\left( -\frac{1}{2};0 \right)\cup \left( \frac{8}{3};+\infty  \right)\) 

  • Câu 36:
    Mã câu hỏi: 463191

    Đặt \(a=\ln 2,b=\ln 5\). Hãy biểu diễn \(I=\ln \frac{1}{2}+\ln \frac{2}{3}+…+\ln \frac{98}{99}+\ln \frac{99}{100}\) theo a & ab?

    • A.
      \(I=-2(a+b)\). 

    • B.
      \(I=2(a+b)\). 

    • C.
      \(I=-2(a-b)\). 

    • D.
      \(I=2(a-b)\). 

  • Câu 37:
    Mã câu hỏi: 463198

    Tính thể tích V của khối lăng trụ tam giác đều có tất cả các cạnh bằng 2a?

    • A.
      \(V=\frac{2\sqrt{3}{{a}^{3}}}{3}\). 

    • B.
      \(V=4\sqrt{3}{{a}^{3}}\). 

    • C.
      \(V=\sqrt{3}{{a}^{3}}\). 

    • D.
      \(V=2\sqrt{3}{{a}^{3}}\). 

  • Câu 38:
    Mã câu hỏi: 463203

    Chọn CT đúng để tính thể tích khối chóp, biết khối chóp có diện tích đáy bằng S và chiều cao bằng h?

  • Câu 39:
    Mã câu hỏi: 463218

    Cho \(m=\sqrt{2\sqrt{2}},n=\sqrt[3]{2\sqrt[3]{2}}\). Giá trị của biểu thức sau \({{\log }_{m}}n\) là?

    • A.
      \(\frac{3}{16}\). 

    • B.
      \(2\). 

    • C.
      \(1\). 

    • D.
      \(\frac{16}{27}\). 

  • Câu 40:
    Mã câu hỏi: 463225

    Số mặt cầu chứa 1 đường tròn cho trước là? 

    • A.
      Vô số 

    • B.
      2

    • C.
      4

    • D.
      1



  • Link Hoc va de thi 2024

    Chuyển đến thanh công cụ